Intégration de l’IA dans les applications Java avec TensorFlow
L’Intelligence Artificielle transforme radicalement le développement logiciel,
Au cœur de la transformation numérique, deux géants se disputent la manière dont nous déployons nos applications dans des environnements toujours plus complexes. Docker et Kubernetes ne sont pas de simples outils, mais des piliers qui redéfinissent les stratégies de déploiement continu. Face à cette dualité, comment naviguer et choisir la solution la plus adaptée à vos besoins spécifiques ?
Les conteneurs sont devenus la pierre angulaire des déploiements modernes. Pour bien comprendre le paysage actuel, il est intéressant de retracer brièvement l’évolution de ces technologies clés :
Cette évolution rapide a conduit à l’adoption massive de ces technologies dans l’industrie, influençant également les langages de programmation les plus utilisés.
Docker est à la conteneurisation ce que le couteau suisse est au bricolage : un outil polyvalent et incontournable. Il permet de créer, gérer et exécuter des conteneurs avec une simplicité déconcertante
Docker Compose, un outil qui permet de définir et de gérer des applications multi-conteneurs excelle dans les environnements de développement et de test, particulièrement sur un seul hôte (single host) et il est particulièrement utile pour réaliser des POCs rapides et efficaces.
Avantages de Docker Compose :
Exemple de fichier docker-compose.yml :
version: '3'
services:
web:
build: .
ports:
- "5000:5000"
redis:
image: "redis:alpine"
Il définit deux services : une application web et une base de données Redis, prêts à être déployés en un clin d’œil.
Si Docker est le soliste virtuose, Kubernetes est le chef d’orchestre qui harmonise tout un ensemble. Il gère le déploiement, la mise à l’échelle et la gestion des applications conteneurisées à grande échelle.
Souvent abrégé K8s, il est devenu le standard de facto pour l’orchestration de conteneurs en production. Selon le rapport de la CNCF de 2021, Kubernetes a atteint un taux d’adoption de 88% parmi les entreprises utilisant des conteneurs en production.
Avantages de Kubernetes :
Exemple de déploiement Kubernetes :
apiVersion: apps/v1
kind: Deployment
metadata:
name: monapp
spec:
replicas: 3
selector:
matchLabels:
app: monapp
template:
metadata:
labels:
app: monapp
spec:
containers:
- name: monapp
image: monregistry/monapp:v1
ports:
- containerPort: 80
Cet exemple définit un déploiement avec trois réplicas de l’app, qui a une haute disponibilité et une résilience accrue.
Docker vs Kubernetes : Complémentaires plutôt que concurrents
Cependant, il est important de comprendre que Docker et Kubernetes ne sont pas en compétition directe. Docker excelle dans la création et la gestion de conteneurs individuels, tandis que Kubernetes brille dans l’orchestration de multiples conteneurs à grande échelle.
Dans un pipeline de déploiement continu typique, vous pourriez utiliser Docker pour construire et tester vos images, puis Kubernetes pour les déployer et les gérer en production.
L’intégration avec des outils CI/CD est cruciale pour un déploiement continu efficace. On retrouve ainsi les options plus populaires :
Exemple d’intégration avec Maven pour la construction d’images Docker :
com.spotify
docker-maven-plugin
1.2.2
monapp
docker
/
${project.build.directory}
${project.build.finalName}.jar
On utilise des templates Kubernetes avec des placeholders pour gérer efficacement différents environnements :
apiVersion: apps/v1
kind: Deployment
metadata:
name: monapp-deployment
namespace: __NAMESPACE__
spec:
replicas: __REPLICAS__
template:
spec:
containers:
- name: monapp
image: /monapp:__VERSION__
Remplacement des variables dans le pipeline CI/CD :
sed -i "s/__NAMESPACE__/${CI_ENVIRONMENT_SLUG}/" deployment.yml
sed -i "s/__REPLICAS__/${REPLICAS_COUNT}/" deployment.yml
sed -i "s/__VERSION__/${CI_COMMIT_SHA}/" deployment.yml
kubectl apply -f deployment.yml
Le déploiement bleu-vert implique de maintenir deux environnements de production identiques, permettant une bascule rapide entre les versions. Il permet ainsi une réduction du temps d’indisponibilité et une facilité de rollback.
com.spotify
docker-maven-plugin
1.2.2
monapp
docker
/
${project.build.directory}
${project.build.finalName}.jar
Les canary releases permettent de déployer progressivement une nouvelle version à un sous-ensemble d’utilisateurs.
Exemple de déploiement canary avec Istio :
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: monapp-vs
spec:
hosts:
- monapp.mondomaine.com
http:
- route:
- destination:
host: monapp-stable
weight: 90
- destination:
host: monapp-canary
weight: 10
Ce manifeste dirige 10% du trafic vers la nouvelle version (canary), permettant un test en production contrôlé.
La migration de Docker vers Kubernetes peut engendrer des défis significatifs pour les équipes de développement.
1️⃣ Kubernetes présente une complexité plus élevée par rapport à Docker, ce qui se traduit par une courbe d’apprentissage plus raide et nécessite une formation supplémentaire pour une maîtrise complète.
2️⃣ Les coûts initiaux peuvent être élevés, car la mise en place d’un cluster Kubernetes requiert des investissements en temps et en ressources financières pour l’infrastructure et la configuration.
3️⃣ La gestion des applications avec état (stateful) demande une attention particulière pour assurer la persistance et la cohérence des données, ce qui peut compliquer le déploiement continu.
Il existe divers moyens pour renforcer la sécurité de votre cluster Kubernetes. Généralement on considère :
L’écosystème Kubernetes évolue rapidement, et plusieurs tendances émergent pour façonner l’avenir de l’orchestration des conteneurs. On retrouve :
➡️ Kubernetes sans serveur (Serverless Kubernetes), avec des solutions comme AWS Fargate pour EKS, permet de déployer des conteneurs sans gérer l’infrastructure sous-jacente, simplifiant ainsi le déploiement continu.
➡️ L’edge computing avec Kubernetes, grâce à des distributions légères telles que K3s, facilite l’orchestration à la périphérie du réseau, optimisant les performances pour les applications décentralisées et les dispositifs IoT.
➡️ L’intégration exponentielle de l’IA et du ML dans l’orchestration des conteneurs améliore l’efficacité opérationnelle en automatisant l’allocation des ressources et la gestion des charges de travail.
➡️ Enfin, l’adoption croissante des maillages de services (service meshes) comme Istio ou Linkerd renforce la gestion du trafic et la communication entre microservices, améliorant la résilience, la sécurité et la visibilité des applications distribuées.
Le choix entre Docker et Kubernetes dépend de la complexité de votre environnement et de vos besoins spécifiques. Docker reste incontournable pour le développement local et les tests, tandis que Kubernetes s’impose comme la solution de choix pour l’orchestration en production dans des environnements complexes.
Ainsi on peut recommander une approche hybride : utilisez Docker Compose pour le développement et les tests locaux, et adoptez Kubernetes pour vos déploiements en production. Cette stratégie permet de bénéficier de la simplicité de Docker en développement tout en profitant de la puissance et de la flexibilité de Kubernetes en production.
L’Intelligence Artificielle transforme radicalement le développement logiciel,
Le contexte Au cœur de la transformation
© 2023 — Tim-Tek.com | Politique de confidentialité
https://codepen.io/simoami/embed/eYrPdz?default-tab=html%2Cresult